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Abstract
In this paper we construct an explicit constitutive model that is capable of describing the
thermomechanical response of a shape-memory alloy. The m'xlel consists of a Helmholtz
free-energy furction, a kinetic relation and a nucleation criterion. The free-energy is associated
with a three-well potential energy function; the kinetic relation is based on thermal activation
theory; nucleation is assumed to occur at a critical value of the appropriate energy barrier. The
predictions of the model in various quasi-static thermnomechanical loadings are examined and
compared with experimental observations.

1. Introduction. Thermoelasticity theory has been used to study certain general issues

pertaining to solids that undergo reversible stress- and temperature-induced phase transitions. In

this theory, the potential energy function that characterizes the material, as a function of

deformation gradient, has multiple energy-wells for certain ranges of stress and temperature, and

each energy-well is identified with a phase (or variant of a phase) of the material. For example,

the studies reported in [1, 8, 12, 19, 21, 22, 31, 34] address issues pertaining to stable equilibrium

configurations of such materials, while [2-5, 16, 18, 35] examine questions related to evolution.

A complete constitutive theory that describes the behavior of such materials consists of a

Helmholtz free-energy function which describes the response of each individual phase, a

nucleation criterion which signals the conditions under which the transition from one phase to

another commences, and a kinetic law which characterizes the rate at which this transition

progresses. Explicit examples of these ingredients have been constructed b) various authors. For

example, Ericksen [13] and Silling [34] have constructed three-dimensional Helmholtz

free-energy functions that model certain crystals. Falk [14] has studied a one-dimensional

polynomial free-energy function and Jipng [20] has used a similar characterization in anti-plane

shear. Models of kinetic relations have been constructed, for example, by Otsuka et al. [30] by
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relating phase boundary motion to dislocation moticn and by MUller and Wilmansky [25] by

using certain statistical considerations.

Recently, Abeyaratne and Knowles [6] presented simple models for each of these

ingredients: their Helmholtz free-energy function was associated with a piecewise linear

material, while their kinetic relation was based on thermal activation theory; they took nucleation

to occur at a critical value of "&'iving force". They also made a qualitiative comparison of their

theory with certain experiments on some shape memory alloys.

The present study generalizes the model of Abeyaratne and Knowles [6]. The potential

energy function in [6] has at most two energy wells, and thus it only accounts for two phases.

However, even in the simplest one-dimensional setting, one often encounters three material

configurations - a parent phase and two variants of the product phase. The priucipal

generalization of the present paper is to construct a three-well energy function analogous to the

two-well model of [6]. This allows us to simulate some experiments such as the one carried out

by Ebrenstein (see Achenbach and MUller [7]), in which a bar composed initially of equal

amounts of two martensitic variants was subjected to a slowly oscillating stress, and at the same

time was heated and then cooled. At various stages during the ensuing process, the bar involved

two martensitic variants, two martensitic variants and austenite, one martensitic variant and

austenite, and pure austenite. A three-well energy is essential for modeling such a phenomenon.

Ai in [6], the kinetic law utilized in the present study is based on thermal activation

theory. The nucleation criterion that we adopt here is based on a critical value of the appropriate

"energy barrier" and is motivated, in part, by the models used to describe nucleation in the

materials science literature; see e.g. Christian (10], Fine [15].

In Section 2 we outline the version of thermoelasticity that we intend to use. In Section 3

we construct the three-well eneigy function and discuss the stability of the various phases. Next,

in Section 4 we calculate the energy barriers associated with this energy function and use them to

establish the nucleation criterion and kinetic relatiou. In Section 5 we carry out a number of

simulations and compare them with experimental observations.
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2. Preliminaries. In this section we review some relevant concepts from the continuum theory

of thermomechanical processes within a purely one-dimensional setting that corresponds to

uniaxial stress in a bar. The bulk behavior of a thermoelastic material may be characterized by its

Helmhholtz free-energy per unit mas., p(yO), where y is strain and 8 is temperature; the stress 3

Yas specific entropy TI at a particle are then constitutively related to y, 0 through

0 = 0), = -4e (Y, 8), (2.1)

where p denotes the mass density in the reference configuration. The potential energy per unit

reference volume G(y8, 0. a) of the material is definea by

G(Y, 0, a) = p 0(T, 8) - oy, (2.2)

and its val, at an extremum of G(e; 0, a) coincides with the Gibbs free energy per unit

reference volume g(y, 8) = p•(yO)- P , On)y.

In order t model a material that can undergo a thermoelastic phase transition, the

function G(.; 0, a) should have multiple local minima ("energy-wells") when the temperature

and stress take on suitable values; the corresponding Helmholtz free-energy potential 4r(., 8) will

be non-convex, and the stress-strain curve characterized by o = pil~y, 8) will be non-monotonic.

In this theory, each local minimum of the potential energy function G, and therefore each branch

with positive slope of the stress-strain curve, is identified with a different (metastable) phase of

the material.

Suppose that G(.; 8, a) has at least two local minima corresponding to a given

temperature 0 and stress o, and let y = 1= (0, a) and y = J= *(0, o) denote the values of strain

at these two enerry-wells. Then the strain at a particle that is subjected to this 0 and a could be

either t or + depending on which energy-well (i.e. phase) the particle is in. Let x--s(t) denote the

current location in the reference configuration of a particular particle of a bar; suppose that the

particle immediately to the left of x=s(t) has a strain 71 while the strain on its right is f; then x =

s(t) denotes the location of a phase boundary, i.e. an interface that separates two distinct phases
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of the material. During a quasi-static process, the rate of entropy production r(t) in a segment of

the bar that contains the interface x=s(t) but no other phase boundaries, and which is at a uniform

temperature 0(t), can be shown to be

r(t) - f(t) i(t)/0(t). (2.3)

where

f = G(J; 0, a) - G(ý'; 0, a); (2.4)

f is known as the "driving force" acting on the phase boundary. The second law of

thermodynamics thus requires that the following entropy inequality hold:

f a t 0. (2.5)

If the driving force f happens to vanish, one speaks of the states (0, 8) and (j', 0) as being in
"phase equilibrium" and of the quasi-static process as taking place "reversibly". If G(+; 0, a) >

G(r,, 0, a), then f is positive and so according to (2.5) one has i t 0; thus if the phase boundary

propagates, it moves into the positive side and thereby transforms particles from (f, 0) to (a, 0).

In this sense, the material prefers the smaller minimum of G. This is also true in the reverse case

when G(+; 0, a) < G(t 0, a). One therefore speaks of the phase associated with the lowest

energy-well as being the stable phase.

By using the first law of thermodynamics one can show that the heat geuerated when a

unit mass of material changes phase from (f, 0) to (T, 0) is f/p + X where X = 0 ( i - i1) is the

latent heat; if the phase change occurs under conditions of phase equilibrium, then f=0, and the

heat generated is

Let x = s(t) denote the Lagrzngian location of a phase boundary at time t. As particles

cross this interface, they transform from one phase to another at a rate that is determined by the

underlying "kinetics". The kinetics of the transformation control the rate of mass flux pi across
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the phase boundary. If one assumes that this flux depends only on the states (0', 8) and (0. 0) on

either side of the interface, then the propagation of the phase boundary is governed by a relation

of the form

S= v(a, +, 0), (2.6)

where the kinetic response function v is determined by the material. Alternatively, since the

constitutive relations a = pvy(f, 0) and a = PviT('. 0) can be inverted (separately) for each

phase, one can express • and j' in terms of a and 0, and thus re-write the kinetic law (2.6) in the

form

s= v(a, 0), (2.7)

where the function v depends on the two particular phases involved in the transformation and is

different for each pair of phases. Finally, by substituting the inverted stress-strain-temperature

relations into (2.4) one chm express the driving force acting on an interface between a given pairA i
of phases as f = f(O, a); this in turn can be inverted at each fixed 0, and so the kinetic law can be

expressed in the form

S= V(f, 0). (2.8)

The basic principles of the continuum theory do not provide any further information regarding

the kinetic response functions V; in particular, explicit examples of V must be supplied by

suitable constitutive modeling.

A particle changes its phase either when it crosses a moving phase boundary or by the

alternative mechanism of nucleation. Consider, for example, a quasi-static process in a bar which

involves only a single phase for some initial interval of time, and two-phase states at subsequent

times. The kinetic law describes the evolution of eisting phase boundaries and therefore is only

operational once the bar is in a two-phase state. The transition of the bar from a single-phase

configuration to a two-phase configuration is controlled by a "nucleation criterion". If a particle
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is to change phase from a state (y', 0) to a state 4, 0) through nucleation, some critical condition

of the form 4)(0, o) = 0 should be reached at that particle, where 0 depends on the pair of phases

involved in the transistion. Models for 0 are often based on the notion of "energy barriers", as

will be described in Section 4.

We close this section with a brief discussion of some qualitative features of the

one-dimensional model that is to be constructed in the sections to follow. Consider momentarily

the three-dimensional continuum theory, and suppose for purposes of discussion that the material

at hand exists in a cubic phase (austenite) and an orthorhombic phase (martensite); an example of

this is the class of Cu-Al-Ni shape-memory alloys studied extensively by Otsuka and co-workers,

e.g. [28-30], and more recently by Chu and James [11]. In view of certain invariance

requirements, the associated three-dimensional potential energy function G must have seven

energy-wells corresponding to the austenite phase and the six "variants" of martensite. During a

uniaxial test of a suitably oriented single crystal specimen, and for suitable values of temperature

0, the material is found to remain in the cubic phase for sufficiently small values of stress, in the

orthorhombic phase with the long side of the crystal parallel to the tensile axis for sufficiently

large tensile stresses, and in the orthorhombic phase wilh its long side normal to the tensile axis

(i.e. in a different variant of the orthorhombic phase) fo:r sufficiently large compressive stresses.

In the one-dimensional theory we model this by allowing G to have three energy-wells for

suitable 0 and a, the ones at the largest and smallest values of strain correspond to the two

variants of martensite just described, while the one at the intermediate value of strain is identified

with austenite. Since the variants of martensite are crystallographically identical to each other

when a = 0, the energy-wells corresponding to them are required to have the same height at all

temperatures whenever the sfress vanishes. Moreo -, all three energy-wells should have the

same height if the stress vanishes and the temperature coincides with the transformation

temperature 0 T. At higher temperatures, the phase with greater symmetry (austenite) is usually

preferred over the low-symmetry phase, and so the model is to be constructed such that the

austenite energy-well is lower than the martensite wells when 0 > 0T; the reverse is true for 0 <

0T. The crystallographic similarity between the variants also suggests that the specific entropy

associated with them should be identical, and therefore that the latent heat associated with the
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transformation from one variant to another should be zero; this too is a feature of our model.

Finally a note on terminology: for simplicity of presentation we shall sometimes speak of

the "three phases" rather than the "one phase and two variants"; similarly we shall often use

the term "phase boundary" generically to refer to both an interface between two phases and to

an interface between two variants (which ought to be called a twin boundary).

3. Helmholtz free-energy function. In this section we construct an explicit three-well

Helmholtz free-energy function V(y, 0) that characterizes the response of a multi-phase material;

the three energy-wells are viewed as corresponding to an austenitic phase and to two variants of

martensite. Recall first that the elastic modulus It, coefficient of thermal expansion a and specific

heat at constant strain c of a thermoelastic material are related to V(y, 0) through,

p 8)n, = ti, -V7(.0 0) / V4y, 8).= a. -0oo(y, 0) = c. (3.1)

Thus if ti, a and c are constant on some domain of the (y, 0)-plane, then by integrating (3.1) one

finds that

piv(y, 0)= (1/2)( Y g.) 2  paY 0 + Pc (0-0 log(0/0,)) + pV. (3.2)

on that domain, where g., 0. and iV. are constants.

Consider a material which exists in a high-temperature phase austenite (A) and as two

variants (M+ and M') of a low-temperature phase martensite. Suppose for simplicity that the

austenite and both martensitic variants have the same constant elastic modulus pA>O, the same

constant coefficient of thermal expansion a>O and the same constant specific heat c>O. (The

model that follows can be readily generalized to describe the case wherein the different phases

have different but constant material properties.) By (3.2), the Helmholtz free-energy function

V(y, 0) associated with this material must have the form
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(p42) (y- gj) - ia y 0 + pc (80-0log(0I01)) + pxw on P 1.

pwvr,0)=, j (p)(y-g2 ) 2  _ gaIyO + pc(8-8log(G-/O2)) +%P1 2  oDP2 (3.3)

4V12) (Y-g93 ) 2  - gtay0 + "c(O-0log(0/O3 )) +p'I 3  on P3 '

where p is the mass density of the material in the reference coLfiguration, and 0i, gi, vi' i=1,2,3,

are nine additional material constants whose physical significance will be made clear in what

follows. The regions P1, P2 and P3 of the (y, 0)-plane on which the three expressions in (3.3)

hold are the regions on which the respective phases A. M+ and M' exist; they are assumed to

have the form shown in Figure 1, where in particular the boundaries of PIV P2 and P3 have been

taken to be straight lines. The temperature levels 01 and 0 M denote two critical values of

temperature: for 0 > 0 M the material only exists in its austenite form, whereas for 0 < 0 m the

material only exists in its martensite forms. Throughout this paper we will restrict attention to

temperatures less thzn 0M.

We now impose a number of restrictions on 4r in order that it properly model the

stress-free response of the material we have in mind. Since the potential energy function G and

the Helmholtz energy function 4r coincide when the stress vanishes, any characteristic to be

assigned tn G at a = 0 could be equivalently imposed on 4r. Let Om and OM be the two critical

temperatures shown in Figure 1, rid let OT denote the transformation temperature, 0 < Om < OT

< Om. We assume that all three phases A, M+ and M" may exist when a = 0, 0 = OTr Therefore

the function Ve(, 0 T) must have three local minim-, with the minima occuring at the smallest,

intermediate and largest values of strain identified with M-, A and M+ respc--tively. Since OT is

the transformation temperature, the value of V at each of these minima should be the same. Next,

for a = 0 and 0 close to OT, we require q(., 0) to continue to have three energy-wells. Moreover,

since M+ and M" are regarded as "variants" of each other, the two martensite -.nergy-wells must

have the same height for all temperature in this range; in addition, for 0 > 0 T the martensite wells

must be higher than the austenite well, while for 0 < 8T they should be lower.

On enforcing these requirements on the function V defined by (3.3), one finds that
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V1  V2 = •V" -3 -r r> 0 - (3.4)

log ) "(g92 g1) + YT/(C0T), log (03/Y1) = (93  1) + Ix •
PC P

In (3.5) we have let XT denote the common value of v1- v2 and 'V," V3; one can readily verify

that XT represents the latent heat of the austenite -a martensite transitions at the transformation

temperature 0T and that the latent heat associated with the M+- M transition is zero.

The strss-response function 0(2, 0) = P1P((, 0) associated with (3.3) is

S[I(y-g1) - aO on P1,
6(y, 0) = (y-g 2 ) - Ixa0 on P2 ' (3.6)

tx(y-g 3 ) - Mi0 on Py3

Two graphs of 6(y, 0) versus Y are shown in Figure 2: Figure 2(a) corresponds to a fixed vqIue of

temperature in the range Om< 0 < OM and the stress-strain curve shows three rising branches

corrtsponding to the three phases A. M+ and M'; Figure 2(b) is associated with a temperature in

the range 0 < 8 < 0m and the two rising branches of the stress-strain curve correspond to the

variants M + and M'.

Of the three parameters gl, g2 and g3 , one is fixed by the choice of reference

configuration, while the other two are determined through the transformation strains. In

particular, if we choose stress-free austenite at the trans rmation temperature 0DT to be the

reference state, then by setting 6(0, OT) = 0 in (3.6)1. one btains

gl ="T- (3.7)

Next, let TT (>0) denote the transformation strain (see Figure 2(a)) between each martensitic

variant and austenite. Then, from (3.6),
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TT g~2 -9 1= g1 -g 3  0". (3.8)

(This can be readily generalized to the case where the transformation strain betweea phases A

and M~ is say 4,l and that between A and M is TT 4 j.) Finally, if (3.4), (3.5), (3.7) and (3.9)

are substituted back into (3.3), one finds that p'V(y, 8) contains the term

p'v1 + (P/12)CY2 (?. + pcO log(8 1/8,O.) as an inessential linear function of temperature which may

be eliminated by taking

p~V1=(P/r2)a2 2T 1 0  (3.9)

In swmnmay, the material at hand is characterized by the common elastic modulus ,A,

specific heat at constant strain c and coefficient of thermal expansion ac of the phases; the

stress-free transformation temperature OT; the mass density p in the reference state; the latent

heat XTat the temperature OT ; and the transformation strain yTT The Helmiholtz free-energy

functki(a is given by combining (3.3) with (3.4), (3.5), (3.7) - (3.9):

[Wt2) Y2 - p.a y( -OT) + pc 0(1 - log(O/OT)) on P1,

p T 0)y 4 W)(PAIY -YT ) .p2  - yTO O"T ). + pcO(1 - log(O/8T)) - O - O/OT) on PT,

(paly +yT) - Ipa(y + TXO -OT) +pc8(CI - log(8iOT)) -Y p( O/OT) on PT.

(3.10)

The various otlher thermo-mechanical characteristics of the material can now be derived from

(3.10). In particular, the stress-response function 20(y 8) = p'V~(y 8) is given by

6y ) t(-T aO T on (3.11)
pIycyT) r) P29

c(OT~) 0on PT.

In order to complete the description of the Helmholtz free-energy function we need to

specifyr the regions P1. P2 and P3 of the (T. 8)-plane shown in Figure 1, i.e. we need to specify
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the boundary curvec y = jK(O) shown in the figure. To this end, we first prescribe the stress-!evels

at the local maxima and minima of the stress-strain curve. As indicated in Figure 2, we take, for

simplicity, these stress-levels to be given by iOM(O) and ±Om(O). In view of our earlier

assumption that the boundaries of the regions P1 ' P2 ' P3 are straight, the functions oM(O) and

Om(0) must be linear in 0. Moreover, since according to Figure 1 we must have A

3(0m). 3( )=A O4(M) and ýI& )= A2(
0 M), it follows that oa(Om) = 0 and OM(OM) -

am(OM) = 1 7T. Thus

oal(O) = i1M(O m) foIn em <0< M, (3.12)

Om(O) = pr(O -OM) + IM(OM -Om) - T for 0  < 0 < M.,

where m and M are positive material constants. The equations Y = Yi(0), i=1,2,3,4, describing the

boundaries of P1 " P2 and P3 are then given by +c7M(O) = A( ̂ i), 0), i=3,2, and ±Om(G) =

Y -i(e), 0), i=4.1.

Thus far, we have only described V on the ('1 metastable") portion P1 + P2 + P3 of the

(, 0)-plane. It is not ,,ecessary, for the purposes of the present section, to specify an explicit

form for 4r on the remaining ("unstable") portion of this plane; any function 4r which is once

continuously differentiable, is such that v¥ is negative on the unshaded portion of Figure I , and

conforms with (3.3) would be acceptable. An infinite number of such functions exist, provided

only that the material parameters satisfy certain inequalities; this is discussed in the appendix.

Next, it is useful to map the regions Pi' i=1,2,3, of the (y. 0)-plane associated with the

respective phases A, M+ and M' onto the (0, o)-plaze using a= 0(Y, 0). The result of this
mapping is displayed in Figure 3 where P' is the image of P1. Given the stress a and temperature

0 at a particle, Figure 3 shows all of the phases that 2re available to that particle.

Finally we address the issue of the stability of the phases. The potential energy function

G(*r 0, a) = PV(Y, 0) - oO of the material at hand can be calculated using (3.10). At each (0, a),

G has one or more local minima. Where G has multiple energy-wells, one can use the explicit
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formula for G to detrxnine the particular minimum that is smallest. This determines the phase

that is stable. The result of this calculation is displayed in Figure 4. The stress-lcvel a (0)

indicated in the figure is given by

0 0 T (3.13)

and is known as the Maxwell stress for the A-M 4 transition. The Maxwell stress for the A-M"

and M-M" transitions are -%o(9) and 0 respectively. The two states A and M that are both

associated with any particular point on the boundary o = %o(0) both have the same value of

potential energy G and both are stable; if these states co-exist and are separated by a phase

boundary, the driving force on that interface would be zero and the phases would be in phase

equilibrium.

Suppose momentarily that a particle always chooses the phase that is stable from among

all phases available to it. Then the response of a particle as the. stress or temperature is slowly

varied is fully determined by Figure 4. For example, consider a fixeO temperature 0 greater than

the transformation temperature OT. As the stress a is increased monotonically from a

sufficiently negative value, the particle is in the martensite variant M' until the stress reaches the

value -oa(0); it then transforms to austenite and remains in this phase as the stress increases over

the intermediate range -Go(0) < a ,< o(0); at a = ao(0) the particle transforms to M+ and

remains there for a > o0(0).

The immediately preceding discussion assumed that a particle is always in the stable

phase. In solids however, particles can often remain for long times in states that are merely

mtntastable and the transition from a metastable phase to a stable phase is controlled by additional

cotiderations, viz. nucleation and kinetics. We now turn to these issues.
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4. Nucleation and kinetics. Given the stress a and temperature 0 at a particle, Figure 3 shows

the various phases that that particle can adopt, while Figure 4 indicates which among them is the

stable phase. If a particle happens to be in a phase that is not its stable phase, the questions of

whether, and how fast, it will transform into the stable phase are answered by a nucleation

criterion and a kinetic law. In this section we will describe simple models for nucleation and

kinetics under the assumption that the phase transitions are "thermally activated".

A particle can change its phase in one of two ways: a particle whose phase is the same as

that of its neighboring particles could change its phase spontaneously through "nucleation" if

the stress and temperature at that particle satisfy an appropriate nucleation criterion.

Alternatively, a particle in one phase adjacent to a particle in a different phase and separated

from it by a phase boundary, will change phase through "growth" if the phase boundary

propagates towards it, the motion of the phase boundary being controlled by a kinetic law.

Energy barriers: Figure 5 shows two schematic graphs of the potential energy function

G(y, 0, a) plotted versus y for fixed (0, a). Figure 5(a) shows three local minima and

corresponds to a pair (0, a) at which all three phases co-exist (i.e. the point (0, a) lies in the

region common to P'1 P2 and P3 in Figure 3); Figure 5(b) corresponds to a pair (0, a) at which

only the two martensite variants co-exist. Figures 5(a) and 5(b) of the potential energy function

correspond to the respective Figures 2(a) and 2(b) of the stress-strain curve. The six quantities

bij (0, a) indicated in Figure 5 are the energy barriers to a transformation from phase- i to

phase-j, where it is convenient to use the subscripts 1, 2 and 3 to refer to the phases A, M+ and

M' respectively. In order to calculate these energy barriers, we need expressions for the values of

o at the local maxima, and this in turn requires a knowledge of the Helmholtz free energy

function 4 on the unshaded regions of Figure 1. While we can suitably continue (3.10) into this

"unstable region" in many different ways, our present purpose is merely to construct a simple

continuum model that describes the various features of the theory. Consequently, we will simply

extend the parabolas which describe G near its local minima in Figure 5 until they intersect, and

use the values of G at these intersection points as estimates for the valuzs of G at the local

maxima. Using (3.10) to calculate G(r; 0, 0) = p•i(y, 0) - oy and then carrying out this

calculation leads to the following expressions for the six energy-barriers:

-13-
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-1 2
b1 3(, o) = (21t)" [o + 0o(O) + ILYT12 ]

-12
b31(0, o) = (210" E oa + ao(0) - iLYT/2 ]

b 12(0, o) = (25t)"-1 [ a - 00o() - ttrT/ ]2

-1 2
b 21(0' o) =-(211"1 [ a - 0o(0) + JAYT12 12 (4.1)

b23 (0, o) = (21")1 [ a + IATT ]2,

b32 (0, o) =(2t)-" [C 0- tLyT '2.

where each bNO(8, o) is defined for values of (0, o) at which the ith and jth phases co-exist, i.e.

the point (0, a) lies in the region common to P' and Pj in Figure 3; ao(0) is the

austenite-martensite Maxwell stress introduced previously in (3.13).

Nucleation: Considering first the question of nucleation, we suppose that a particle

which is in phase-i will transform to phase-j by nucleation if the relevant energy barrier bij(0,o)

is less than some critical number nij; the associated nucleation criterion is thus given by setting

b.0(0, o) = n.. in (4.1). In view of the symmetry of the potential energy function G when a =0,

we shall assume that both the A-,M+ and A-*M" transitions nucleate at the same value of

temperature if the stress vanishes; a similar assumption for the reverse M+-,A and M-*A

transitions will also be made. The former value of nucleation temperature is denoted by M. (for

"martensite start") while the latter is denoted by As (for "austenite start"). Finally, we will also

assume that at any given temperature 0, the nucleation stress-level for the M+ -M" transition is

the negative of the nucleation stress-level for the reverse M'--M+ transition at that same

temperature. One can readily enforce these restrictions on the nij's; when combined with (4.1),

this leads to the following nucleaion criteria for the various transitions:

* + 0o(8) s Oo(Ms) for A--,M,

o + Oo(0) > oo(As) for M'-*A,

*0- a(8) ?:-Oo(Ms) for A-*M+,

o - 00(0) s - Oo( A.) for M+ -A, (4.2)
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o2 •- •for M'-,M

for M+ --M-,

where oo(0) is the austenite-martensite Maxwell stress given by (3.13) and the constants M5, As

and I are characteristic of the material; necessarily, M. < OT < A. and I > 0.

Figure 6 illustrates these nucleation criteria on the (0, o)-plane. If the inequalities in (4.2)

hold with equality, the resulting equations describe a set of straight-lines in the (0, o)-plane; the

nucleation criterion states that, as indicated in the figure, crossing one of these lines nucleates an

associated transition. Figure 6, as shown, corresponds to a material for which the critical

nucleation stress-level given by (4.2) for the M-,A transition exceeds the corresponding

stress-level for the A-*M+ transition for some range of temperature, i.e.

Z > (1/2) (pX,/YTOT) (As -Ms); (4.3)

this need not necessarily be the case.

If the current state of the bar were to involve either a temperature or stress gradient, one

could determine the location in the bar at which nucleation occurs. In this paper we will

consider a uniform bar that is always subjected to uniform stress and temperature fields; the

location of the nucleation site in this bar is therefore rather arbitrary. If the bar had been rendered

inhomogeneous by a slight uniform taper with the small end at x=0 and the large end at x=L,

then the transition from a low-strain phase to a high-strain phase would necessarily commence at

x=O and the reverse transition would occur at x=L. We shall arbitrarily assume that this is the

case in our uniform bar as well.

Kinetics: Let x = s(t) denote the location at time t of a phase boundary in a bar, and let

(', 0,a) and (f, 0, a) denote the strain, temperature and stress at the two particles adjacent to the

phase boundary on its left and right, respectively. Suppose that the particle on the left is in

phase-i while the particle on the right is in phase-j (recall that i=1, 2, 3 corresponds to phases A,

M, M respectively). The driving force f G 4(, 0, a) - G(I, 0, a) on an i/j phase boundary can
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be calculated from (4.1):

f Y~ o() for aM +/A interface,

f= - Y(o- 0())for an A/M + interface,

f= Y(a+ ao(O) ) for an NMW interface, (4.4)

f TT + COO) ) for a M7A interface,

f= 2 oYT fora M /M' interface,

f =-2oYT for a M-/M+ interface.

As the phase boundary propagates through the bar, the particle immediately in front of it

"jumps" from one local minimum of 0. to another, and an explicit model of the kinetic relation

may be constructed by viewing this jumping process on an atomic scale. In order to jump from

one minimum of G to the other, an atom must acquire an energy ai least as great as that

represented by the relevant energy barrier: for an atom undergoing a phase-i-. phase-j transition

this barrier is b.4ic, 0); for the reverse phase-*j-Ophase-i transition it is bj.(o, 0). Under suitable

assumptions about the statistics of this process, the probability that the energy of an atom is at

least as great as B is exp(-B/KO) where K is Boltzmann's constant. The average rate at which

atoms jump from one minimum to the other is taken to be proportional to the probabil ity of

exceeding the corresponding energy barrier; we assume for simplicity that the proportionality

factor is the same for the phase-i-+phase-j and phase-j-+phase-i transitions. The velocity ; of the

phase boundary, being the macroscopic measure of the net rate at which atoms 'change from

phase-i to phase-j, is then taken to be the difference in the average rates associated with the i-1-j

and the j -+i transitions:

sRi~j exp(~-'j) -K exp(- rKO (4.5)

where r denotes the number of atoms per unit reference volume and R is a positive

proportionality factor, related in part to the frequency with which atoms attempt to crossover to

the new phase.



Substituting (4.1) into (4.5) now leads to an explicit representation for the kinetic

relations of the various transitions in the form s = vi (o, 0). By using (4.4), they can be expressed

in the alternative form i = V. (f, 0):

f2 ++1Jg4/41 ' f I
S = 2 R.. exp - sinh (4.6)

li 2prg2 KO 2rKO

where g =yT for both M+/A and A/M" interfaces, and g = 2¥T for an M+/M" interface. These

kinetic relations automatically satisfy the condition NVi (f,0) -a 0, so that any moticn consistent

with them will conform with the entropy inequality (2.5). Moreover, at each fixed 0, V 0(f,0)

increases monotonically with f, so that the greater the driving force, the faster the speed of

propagation. If the driving force f is small, so that quasi-static processes take place close to phase

equilibrium, one can approximate (4.6) to obtain the following kinetic relation which is linear in

f-

__0 Sr, - - " (4.7)
rKO TrKOj

5. Thermo-mechanical response of the modeL In this section we will utilize the constitutive

model constructed in Sections 3 and 4 to determine the uniaxial response of a bar when it is

subjected to various thermo-mechanical loadings. We describe the analysis associated with one

of these loadings in some detail; the analysis correspoading to the remaining cases is

conceptually similar.

Consider the isothermal mechanical loading of a uniform bar at a temperature 0 > As.

The bar is initially unstressed and is composed of austenite. As the stress o(t) is mononotonically

increased, the bar remains in this phase for some time 0 < t < t1 . By (3.11), the elongation 6 of

the bar during this stage of loading (measured from the refirence state) is given by

6t)/L. = +(t)/ (0 -OT) for 0 < t < t1 . (5.1)
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From Figure 6 and the paragraph below (4.3) we conclude that M+ martensite is nucleated at the

left end of the bar at the instant t = t1, where t1 is given by

oCtY CFO(()) -%o(Ms). (5.2)

During the next stage t1 < t < t2, the bar is composed of M+ martensite on the interval 0 < x <

s(t) and austenite on s(t) < x < L. By (3.11),

6(t) = s(t) (O(t)/It + yT + a (0 -OT) ] + [L - s(t)] [o(t)/tt + a (0- OT)] for tj< t < t2 ,

(5.3)
where the phase boundary location s(t) is found by integrating the appropriate kinetic relation in

(4.6), (4.4), i.e.

2R~ f2(t) + 11.2/4 't r f(t)2(t) = 2R exp -- - s - s(t) = 09 (5.4)

exlýTl- 2rKO S )0

with the driving forve f(t) = [O(t) - co(0)] 1T. At the instant t = t2 , the phase boundary reaches

the right end of the bar, s(t2 )=L. For t Lt2 the bar consists entirely of M+martensite and its

response, according to (3.11), is given by

t)/L -- o(t)L+yT+ac(OrOT) fort> 2 . (5.5)

A similar analysis can be used to describe the response corresponding to subsequent unloading,

as well as to loading by compressive stress in which case the M" variant is involved instead of

M.

In order to study the quantitative, as well as qualitative, suitability of our model, we

chose values for the material parameters that are of the correct order of magnitude for a

Cu-Al-Ni shape-memory alloy:
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I= 3 x 1010 N/m2 , p =8000 kg/m3 ,

a = 16 x 10/"6K, c = 400 J/kg °K,

yT= 0.05, XT = 5.7 x 103 J/kg,

OT =3070 K, A, = 3080 K, M= 3060 K, (5.6)

I = 2.5 x 107 N/m2,

K = 1.381 x 10. 2 3 J/ K,

Rii = 0.0448 m/s,

r =9.046 x 102 8 atoms/m3.

The values of the transformation and nucleation temperatures 0 T, A. and Ms were taken from

Otsuka Ct al. [281 and correspond to an alloy whose composition is Cu-14.0 A1-4.2 Ni (wt%). By

comparison, the remaining material parameters are less sensitive to the alloy composition and the

values chosen for them do not correspond to an alloy of this precise composition. The modulus

t, the transformation strain IT and the latent heat XT at the transformation temperature were

estimated using data in Otsuka and Wayman [29]. The values of the mass density p, coefficient

of thermal expansion a, and rpecific heat c were estimated using information in [24]. The value

of the M+/M nucleation stress I was obtained from Sakamoto et al. [32]. The value of R12 was

estimated by using our kinetic relation (4.6) in conjunction with the austenite/martensite interface

velocities measured by Grujicic et al. [17] and reported in their Figure 5; the remaining R..'s

were arbitrarily assumed to have this same value. The number of atoms per unit reference

volume, r, was calculated by using the mass density, alloy composition and the atomic masses of

Cu, Al and Ni.

There are four other material parameters, viz. m, M, Om and 0 M, that are involved in the

description of our model. Even though they do not affect the response of the material, the

validity of the model requires that such numbers exist in a manner that is consistent with the

various constitutive inequalities given in the appendix. One can show that there is a range of

acceptable values for these parameters.

Results: (i). Figure 7 shows two force-elongation curves corresponding to isothermal

mechanical load cycling by the application of a prescribed stress. Figure 7(a) corresponds to a
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temperature below M, with the bar transforming between the M' and M+variants without

involving austenite. Figure 7(b) corresponds to a temperature greater than As; as the stress

increases from a sufficiently negative value, the bar transforms from M" to A and then from A to

M+. The loading and unloading rate underlying both of these figures is Io(t)l = 5 x 104 N/m2 sec.

The response depicted in these figures is similar to that observed by Nakanishi [27] for Au-Cd;

see Figures 10, 13 in [27].

(ii). Figure 8 shows two elongation-temperature curves which result from cycling the

temperature with the stress held fixed; Figures 8(a) and (b) correspond respectively to tensile and

compressive values of the applied stress. The bar transforms between the phases A and M+ in the

former case, between the phases A and M' in the latter. Observe that the transformation from the

high temperature phase (austenite) to the low temperature phase involves an elongation in Figure

8(a) and a contraction in Figure 8(b). The heating and cooling rate underlying both of these

figures is i0(01 = 0.001°K/sec. The response depicted in these figures is similar to the response

described by Krishnan et al. [23], Figure 13 for Cu-Zn at a constant tensile stress and that

observed by Burkart and Read [10], Figure 6 for In-Tl under compressive stress.

If the initially austenitic bar remains stress-free as it is cooled from a high temperature,

the phases M+ and M are both nucleated simultaneously at 0 = Mthe former at the left end of

the bar, the latter at the right end; they then grow at the same rate according to their kinetic

relations, and once the transformation is complete, the bar consists of an equal mixture of M+

and M". Since the transformation strains involved in the A-.M+ and A-CM" transformations

have been taken to be YT and "YT respectively, the length of the bar does not change due to

transformation. The elongation-temperature response in this case is therefore a straight line. This

is a trivial, one-dimensional manifestation of what is sometimes referred to as "self

accomodation".

(iii). Figure 9 displays the result of a calculation which attempts to model the "shape

memory effect". We begin with a martensitic bar which is composed of M+ for 0 < x < LI4 and

M" for L/2 < x < L and whose initial temperature is less than Ms. The bar is first subjected to a
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program of isothermal mechanical loading during which time the stress is first increased %nd then

decreased back to zero. At the end of this stage of loading, the bar is composed of M+ only (as

can be deduced from Figure 6), the stress has returned to the value zero, and the bar has suffered

a permanent elongation. During the next stage, the bar remains unstressed while it is first heated

to a temperature greater than As (which, according to Figure 6, transforms it to phase A) and is

then cooled back to its original temperature (which, by Figure 6, leads to a configuration

involving equal amounts of M and M-); at the end of this thermal loading, the state of the bar is

identical to its original state. In the calculations underlying Figure 9 we took the mechanical

loading and unloading rate to be Ia(t)l = 8 x 105 N/m2 sec and the heating and cooling rate to be

I0(t)I = 0.080 K/sec. Schematic figures similar to Figure 9 may be found, for example, in

Krishnan et al. [23].

(iv). Next we simulate the experiment carried out by Ehrenstein as described by

Achenbach and MUller[7]. Consider a martensitic bar which is initially at zero stress and at a

temperature < M5; the segment 0 < x < L/2 of the bar consists of M while L/2 < x < L consists

of M+. We consider a time interval 0 :s t :s tF and apply a stress a(t) = c1(1 - cos 2W/80) while

* simultaneously varying the temperature according to 0(t) - 0(0) + E2( 1 - cos 2 r/tF). We take 0

9 1 < Z/2 and O(tF/2 ) < %O(tF/2)) - Oo(As) which ensures that the hottest temperature O(tF/2)

is large enough to nucleate austenite. The resulting elongation history is shown in Figure 10(a)

and may be compared with Figure 2 in Achenbach and MUller [7]; the loading parameters

underlying our figure are c = 5 x 105 N/m2 , 2 = 4°K, 0(0) = 3040K and tF = 4000 sees.

The calculations show that the macroscopic response of the bar plotted in Figure 10(a) is

associated with the local transitions shown in Figure 10(b): during an initial stage, roughly 0 < t

< 978 sec, the bar consists of only phases M' and M+; the driving force on the M7/M+ interface

is negative (by (4.4)) and this causes the interface to move leftward in accordance with the

appropriate kinetic law (4.6); thus during this stage the amount of M increases at the expense of

M. For dhe heating rate used in our calculation, this leftward moving interface has not yet

reached the end x = 0 of the bar when t = 978 see; at roughly this instant, the nucleation criterion

for the M-. A transition is satisfied and phase A is nucleated at the left end of the bar. As t
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continues to increase, the newly emerged /M' interface propagates to the right (since its driving

force is positive) in accordance with its kinetic law, while the M7M+ interface continues to

- -~ move 'Aeftward; the amount of phase M thus continues to decrease while the amounits of phases

A and M+ increase. A short while later (t - 1026 sec) the nucleation criterion for the M+- A

transition is auatisfied and phase A is nucleated at the right end of the bar. There are three

interfaces in the bar at this time, viz, a rightward moving A/M' interface and two leftward
+ I 1moving interfaces, one M /M and the other M IA. At t W 1136 sec the first two of these

* ~interfaces meet so that during the next stage, the bar transforms from M+- A as the A/M+

* interface advances towards the M+/A interface. Eventually these two phase boundaries meet at t

-1314 sec and the entire bar consists of pha&: A. During the next stage 1314 < t < 3304, the bar

continues to remain in phase A. The temperature which was increasing for 0 <t <2000 begins to

decrease at t = 2000 sec; at t - 3304 'sec the bar is sufficiently -cool for phase M+ to nucleate and

*1 begin to grow, until, eventually at t - 3834 sec the entire bar consists of M.

The qualitative features of~ the elongation history shown in Figure 10(a) can be

understood from the preceding discussion (iigure 10(b)) by keeping in mind that M_ is the
low-strain phase, A is the intermediate-strain phase and M+is the high-strain phase. During the

initial stages 0 < t < 978 and 978 < tl< 1026, when M_ is disappearing, first due to the growth of

M+and then due to the growth of both M +and A, the bar gets longer. During the stage 1136 < t

<1314 the bar is transforming fromt M to A and so the bar gets shorter. Next, for 1314 < t <

3304, the bar remain-, in phase A and, so its length does not change appreciably. Finally, for 3304

<t < 3834, the bar transforms from A to M+and so it gets longer again.

(v). Finally we simulate two recent experiments carried out by MUller and Xu [26] on a
Cu-Zn-Al shape memory alloy. Consider a bar of austenite at an initial temperature > A s. In the

first simulation, the bar is subjected to an isothermal mechanical loading during which the

elongation is increased monotonically until M martensite has nucleated and begun to grow;

then, before the bar has transformed completely to martensite, it is unloaded by decreasing the

elongation back to zero. The experiment is now repeated, with unloading commencing at

different instants, Figure 11(a) shows the result of this simulation (carried out at 8 = 3300K and

11=8.333 x 1076 m/sec) and may be compared with the experimental results reported in Figure
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13(b) of MUller and Xu [26].

In the second simulation, the bar is subjected to an isothermal mechanical loading during

which the elongation is increased until the bar has transformed completely into M+ martensite.

Next, the elongation is decreased monotonically until austenite has been nucleated and begun to

grow; then, before the bar has transformed completely back to austenite, it is reloaded by

increasing the elongation. The experiment is now repeated, with reloading commencing at

different instances. Figure 11(b) shows the result of this simulation which was also carried out at

0 = 3300 K and 161 = 8.333 x 106 m/sec ; cf. the experimental results reported in Figure 14(b) of

MUller of Xu [26].
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Appendix: Restrictions on the material parameters.

Here we shall list all of the inequalities not displayed previously which the material

parameters must satisfy. According to the statement below (3.12) the equations of the boundaries

of the regions Pi in the (y,0)-plane are given by

11(o) ='m()/!p - yT + a(0-0T) for 0<0<0M,

S+ a(0-OT) for 0 e <I <0 M, (A.)
13(0) = OM(O)/4 + c(0- 0T) for Om <0 <0 M,

¶4(0) = om(0)/ji + TT + a(O- OT) for 0<0< 0M,

where the stress-levels am(O) and cM(0) are given by (3.12). In order that the corresponding

straight lines in the y, 0-plane be arranged as shown in Figure 1, it is necessary that z4(0) >

A3(0) > A > 1(0)> -1 for 0 m< 0 <0 M and that ý4(0) > Ai(0) > -1 for 0<0<0

These inequalities can be expressed, upon using (A.1), as

0 < OM(O) < ore(0)+ T p< I t + p(0-0T for 0 c < 0 < OM,' (A.2)

0 < o re(0) +! pT < tt+ pa(O-OT) for 0<0<Om.

Next, since we assumed in Section 3 that all three phases M', A and M+ exist when a =

0 and 0 OT, it is necessary that the corresponding strains y = f(YT' 0 and '(T lie in the

appropriate strain ranges as defined by Figure 1. In view of (A.1) and (A.2), one finds that this

holds if and only if

iT < 1, Om(OT) < O (A.3)

We turn finally to the issue of extending the Helmholtz free-energy function (3.10) to the

unshaded ("unstable") region of the (y, 0)-plane shown in Figure 1. Even though we do not need

an expression for V on this region, it is still necessary to know that (3.10) can I- extended to that

region in the manner previously assumed (see paragraph below (3.12)). The ability to do this is

equivalent to the ability to connect each adjacent pair of rising branches of the stress-strain curve
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in Figure 2 by a declining branch with prescribed area under it. Since the stress-strain curve is to

be declining for strains in the intervals (yI(0). 72(0)) and (73(0), 74(0)) when 0 m< 0 < OM, and

on (71(0). y4(0)) when 0 < 0 < Om. it is necessary that

OM(O) > am(0) for Om < 0 < 0M, - Om(O) > am(O) for 0 < 0 < Om. (A.4)

Next, as is readily seen from Figure 2(a), for 0 m< 0 < OM. the area under the graph of

0(.. 9) between y = 13(0) and ,y = 4(0), must necessarily lie between the areas of the two

rectangles with the same base (ý3(0), $4(0)) and with heights OM(O) and am(O). A similar

restriction applies to the area between y = JI(0) and y = 12(0), and for 0 < 0 < OM to the area

between y = Y(0) and y = V4(0). Thus it is necessary that

-OM~o)(1( o - 1(e)) p 'v(ý2 (O), 9) -p V(11(9), 9) < - Cm(O)(12 -_11())' '
Oe(9) (%4) - ý3(0)) < p '('4(0), 0) - p T(ý3(0), 0) 0< oM(O) (4(0) - ý3(0)), (A.5)

Om(O) (14(o) - 11(o)) < P 0Vt 4(0)' 0) - P Wv(O)( )) < - Om(0) (14(o) - 1()

where the first two sets of inequalities in (A.5) hold for OM 0 g< 0M while the last set holds for

o0 < < O.. Conversely, given two points (j 3(0), OM(O)) and (ý4(0). om(O)) in the (y, o)-

plane, with 14(9) > 13(0), a sufficient condition for the existence of a continuous deareasing
A . . A

function 6(*-, 0) connecting these two points, which is such that the area under it is p 0(74(0), 0)

- p W0(03(0), 0), is that (A.4)1 and (A.5) 2 hold. The requirements (A.4), (A.5) are therefore

necessary and sufficient for the extendability of the Helmholtz free-energy :unction (3.10) to the

unstable region.

The inequalities (A.5) can be expressed equivalently in terms of e stresses ore(0),

OM(O) and oo(9) as
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[OM(O) - Om(9)]2 < 21tT[To(0) - am(0)] for Om < < 0M < ,

[OM(O)- _ m(0)] 2 < 2;LYT[OM(O o(0)] for 8m <e0 < 8 M (A.6)

- 11 T < am(0) < 0 for 0 < 0 < 0m.

The inequalities (A.2) - (A.4) and (A.6) must be enforced on the material model. They

can be reduced by using (3.12), (3.13) into temperature independent inequalities that involve

only the material parameters. We shall not display the resulting inequalites here. These

inequalities, as well as (4.3), are to be imposed on the material constants entering into our model.

One can verifiy that the particular values (5.6) of the material constants, together with a range of

values of the four remaining parameters m, M, Om and 0 M, do satisfy these inequalties. For

example, one possible set of values of the latter four parameters are m = 9.7253 x 10"5 /°K,

M = 10.1371x10"5 /K, 0m = 2850, 0 M= 10,0000; as mentioned previously, the particular

values of these four material constants does not affect the response of the material.
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